At What Distance Does Cathodic Protection Continue to be Effective?

This article explores the answer to a question posed by a student about the length of pipeline protected by a cathodic protection system.


What length of pipeline is protected by a cathodic protection system?

We recently received a question from our website from someone who self-identified as a Student. We love when people ask technical questions and are pleased that students visit the MATCOR website–we have always strived to have a content-rich website to help share CP knowledge. The question is as follows:

“For installed impressed current CP systems with 15 anodes, what would be the approximate radius/length of a 200-mile petroleum metal pipe that would be protected?”

So before diving into the answer, let’s frame this question with an assumption, identify some unknowns and provide a definition.

Assumption

The 15 anodes are part of a single anode bed. The anodes are electrically remote from the pipeline and connect to an appropriately-sized DC power supply (transformer/rectifier, solar power/battery unit, thermoelectric generator, etc.)

Unknown #1: Pipeline Details

Before doing any detailed engineering, there are a few details that must be specified:

  • Pipeline diameter and material of construction
  • Coating type and condition
    • The layout of the pipeline (location of pumping stations, valve stations, and metering stations)

Unknown #2: Soil Conditions

Understanding soil resistivity in terms of location, frequency, and spacing, is critical when designing cathodic protection systems for long-length pipelines.

Definition of Attenuation

a lessening in amount, force, magnitude, or value according to Merriam-Webster

When discussing at what distance cathodic protection continues to be effective along a pipeline, you must consider the attenuation of the CP current. At some point, the current diminishes along the length of the pipeline, becomes insufficient, and can no longer protect the pipeline.

The Answer: Impressed Current CP Systems are Complicated

We can effectively use attenuation calculations for signals generated on a uniform conductor and transmitted through a uniform environment.

In this case, the pipeline is not a uniform conductor; unless it is bare, it is anything but uniform. The coating has less than perfect effectiveness and an unknown number of defects distributed in an unknown manner. The environment is equally non-uniform; soil resistivities change based on location and weather changes. The more non-uniformity, the more inaccurate the results will be for any attenuation calculations.

It is virtually impossible to model mathematically for older pipelines with insufficient coatings. The only effective strategy is to collect data by installing a temporary current source to measure the effective current throw in each direction in multiple locations along the pipeline.

For new pipelines with very good coatings, it is possible to perform some attenuation calculations and empirically determine a reasonable separation distance between anode stations.

The math starts with determining something called the propagation or attenuation constant. To calculate this, take the square root of the resistance per unit length of the structure divided by the leakage conductance per unit length.

In Simple Words…

How hard is it for the current to travel along the pipeline versus how easy it is for the current to jump onto the pipeline?

The smaller this number, the further current will spread. Key factors affecting the attenuation constant include earth resistivity (higher resistivity soils mean further current spread) and coating quality (better coating means further current spread). Armed with this, there are six simultaneous equations that we can use, and that include hyperbolic sine and cosine functions.

Larger, new construction pipeline projects require you to consult with a professional engineer. A brief newsletter article will not adequately cover the mathematical gymnastics involved. We did say that the math is complex.

Well-coated, newer pipelines in moderate to high-resistivity soils can typically be protected for 20+ miles in each direction from an anode bed. Poorly-coated or bare pipelines in low-resistivity soils may require anodes every quarter mile or less.


Need more information? Please contact us at the link below.

Is My Tank CP System Working Correctly?


Ted Huck, Director of Manufacturing and QA/QC at MATCOR, recently published an article in the summer edition of Tanks and Terminals Magazine titled “Understanding Cathodic Protection Systems.” He explains how to assess the performance of cathodic protection systems for above-ground storage tank bottoms (Tank CP Systems).

When asked to summarize these performance assessments, Mr. Huck commented, “Tanks are pretty easy to test, except for those rare occasions when they are not. At that point seek professional help.”

Read the full article.


Need information or a quote for MATCOR tank CP systems? Please contact us at the link below.

Three Ton Sled Anode Assemblies Head to Beaumont, Texas

MATCOR shipped four of the heaviest customer sled anodes we have ever fabricated this month – over three tons each. Headed to Beaumont, TX, the anodes are part of a Gulf Coast refinery expansion project. The anodes will protect a variety of marine piling structures as part of a light crude processing expansion at the refinery.

Sled Anode assembly – pouring the concrete bases.

Each anode is rated for 75 amps and weighs approximately 6300 pounds. Each anode assembly consists of a pair of two-inch diameter Mixed Metal Oxide coated titanium tubular anodes, five-foot-long. The anodes utilize MATCOR’s proprietary tubular anode connection technology for larger diameter anode tubes. Each sled anode has two concrete bases resting on a common wood base fabricated with stout 6” x 6” pressure-treated wooden beams. The concrete ends include lifting lugs to support installation by crane either from land or on a work boat. The function of the treated wood beams is to sink into the sea floor.

Completed Sled Anode assembly – waiting on the concrete to cure.

The anode lead cables are dual insulated HMWPE/ Kynar 1/0 cables housed in a proprietary HDPE jacket and held in place along the sea floor using concrete weights.

Sled Anodes are an exceptionally cost-effective means of protecting large near-shore structures such as dolphins, jetties, pilings, and sheet pile walls. They are easy to install and even easy to remove in advance of dredging operations.

More Information About MATCOR’s Sled Anode Products

Marine Anode Sled Product Page

Houston Sled Anode Installation

[YouTube Video] MATCOR Sea-Bottom™ Marine Anode Sled

[Materials Performance Case Study] Impressed Current Anode Systems for Jetty Piling


Need information or a quote for MATCOR custom sled anodes? Please contact us at the link below.

Get News from MATCOR

Sign Up for Our Newsletter

    I understand my information will be stored securely for the sole purpose of conducting business with MATCOR, Inc. I agree to receive future email communication and understand that I may opt out at any time. View our Privacy Policy.
  • This field is for validation purposes and should be left unchanged.