Category Archives: Pipeline

Zinc Ribbon Installation Projects

MATCOR provides a full range of AC Mitigation capabilities including AC Modeling and Design engineering services, supply of our proprietary Mitigator® engineered AC grounding system, and an entire construction services organization capable of a wide range of AC Mitigation installation services. Two current projects highlight our construction service capabilities with regards to AC Mitigation. The first project involves several miles of zinc ribbon installation for an AC mitigation system in a congested suburban and urban environment using horizontal directional drilling (HDD) equipment. The second application is in a highly rocky environment in West Texas that requires the use of specialized rock trenching technology for zinc ribbon installation.

Zinc Ribbon Installation Using HDD in a Congested Environment

Zinc Ribbon Installation - HDD
Figure 1 – Zinc ribbon being installed through HDD bore hole

This project in northwestern Ohio involved the zinc ribbon installation over several miles using one of MATCOR’s in-house horizontal directional drilling crews. The project required horizontal directional drilling to minimize surface disturbances due to the congested area.

With any typical AC Mitigation installation there are numerous precautions that must be taken to assure a safe installation. This starts with a thorough pre-construction safety review to develop the project site-specific health and safety plan. Each crew member participates in a daily safety meeting to review the day’s planned activities and address all safety concerns in advance of performing any work. Each crew member is required to have the appropriate operator qualifications and site-specific safety training as identified by MATCOR and the pipeline owner.

HDD Bore for Zinc Ribbon Installation
Figure 2 – HDD bore in process

Prior to any other construction activities, the first task is to perform a thorough line locating including potholing (excavation of the top of the pipe). This is to physically assure that the location of the pipeline(s) being mitigated is accurately marked to avoid any risks associated with construction activities in close proximity to the pipeline.

Once the pipeline has been physically located and properly flagged, each individual bore must be planned. The route of the bore is assessed prior to boring activities commencing. The bore planning includes:

  • Identifying entry and exit points
  • How the bore is to be tracked
  • Special precautions that might be needed to maintain the bore during the ribbon installations
  • How the cuttings will be captured, stored and removed
Texas AC Mitigation Installation
Figure 3 – Zinc Ribbon Bore – AC Mitigation design detail – note rail line to the South

As with any construction project, logistics and project management are key to the successful execution of the project. Working in conjunction with the owner and their designated project inspector to assure that the work is performed safely and in accordance with the AC Mitigation design requirements. For the project in Ohio, some additional complications included difficult weather conditions and working in close proximity to a railroad which requires additional permitting and coordination with the railroad. In some locations, traffic control was also required during the installation work.

Rocky Conditions in West Texas

Rock Trenching | AC Mitigation Installation
Figure 4 – Rock trenching in a difficult West Texas environment

Another project that MATCOR is currently completing involves the installation of approximately 15 miles of zinc ribbon in West Texas. The original installation plan called for the use of a cable plow to install the zinc ribbon mitigation wire; however, for large stretches of the installation, the rocky conditions forced MATCOR to switch from the planned cable plow to a high-powered rock trencher to cut through the difficult rocky terrain. This project illustrates the importance of using the right equipment to overcome difficult installation challenges. In some cases, being able to adapt to adverse conditions requires a change in construction methodologies and for this project, MATCOR’s ability to react and make equipment changes allowed the project to proceed on schedule with minimal customer impact.

This project also requires the use of HDD for one specific mitigation segment, as the pipeline traverses a cotton field which includes a buried drip irrigation system. The use of HDD is required to prevent any damage to the drip irrigation system during the AC Mitigation zinc ribbon installation. Coordinating the installation schedule around the cotton crop cultivation added another logistical challenge to the project.

Whatever your AC Mitigation challenge might be, MATCOR’s construction teams are able to work with our clients and their project needs to assure a safe and cost-effective installation project.


Have questions about zinc ribbon installation, or need a quote for AC mitigation materials or services? Contact us at the link below.

CONTACT A CORROSION EXPERT

PHMSA Rule Making Updates – a look at what is ahead on the US Regulatory Front

Overall
The US Pipeline regulatory environment is poised to see several new rules implemented to expand the scope and effectiveness of pipeline regulations with a goal to improve the integrity and safety of hazardous material pipeline. These rule changes were all initiated years ago and have been winding their way through the regulatory process, soliciting input from the industry and from concerned citizens, environmental groups and other interested parties.

The Liquids “Final Rule”
In January of 2017 in the last few days of the Obama Administration, the Department of Transportation’s Pipeline and Hazardous Materials Safety Administration issued a final rule amending its Rule 49 CFR 195 that among other things expanded integrity management and leak detections beyond high consequence areas (HCA’s). The Final Rule tightened standards and broadened data collection and monitoring requirements for pipeline operators. A few days into the Trump administration, the White House issued a directive to federal agencies to freeze sending new regulations to the Office of the Federal Register (OFR) and withdrawing any regulations sent to the OFR. Thus the liquids “Final Rule” that was 6 years in the making was withdrawn and is awaiting resubmittal by the new administration.
While the exact requirements of the Final Rule may be changed, some of the key changes from the withdrawn rule included:

• Assessment of non-HCA pipeline segments every 10 years in compliance with provisions of 49 CFR Part 195.
• Increased use of inline inspection tools for all hazardous pipelines in HCA.
• Requirement for leak detection systems for covered pipelines in both HCA and non-HCAs.

PHMSA anticipates coming out with their revised “Final Rule” in the Fall of 2018.

The Gas “Mega Rule”
On the gas side of the pipeline regulatory environment, 49 CFR Parts 191 and 192, several public meetings have been held regarding PHMSA’s proposed gas rules, often referred to as the Gas Mega Rule. The rulemaking changes originally recommended would have nearly doubled the current number of pages in the regulations. PHMSA has announced that instead of one Mega Rule, the effort would be broken into three separate rules that are expected to be introduced in 2018 and to go into effect in 2019. Part 1 addresses the expansion of risk assessment and MAOP requirements to include areas in non-High Consequence Areas (HCAs) and moderate consequence areas (MCAs.) Part 2 of the rule making focuses on the expansions of integrity management program regulations including corrosion control to gathering lines and other previously non-regulated lines. Part 3 of the gas rule making is expected to focus on reporting requirements, safety regulations and definitions to include expanding into related gas facilities associated with pipeline systems.

Pipeline Cathodic Protection Design for New Transmission Stations

Technological advances in horizontal drilling and fracking have changed the oil and gas production landscape that propels the US Pipeline industry. This combined with an increasing demand for natural gas and the promise of larger export markets for both LNG and US crude oil have led to a surge in new pipeline construction. As a result, corrosion prevention, including pipeline cathodic protection design and engineering expertise is critical as the industry adapts to a changing production landscape and new distribution challenges.

Cathodic Protection Engineering Capabilities

MATCOR has been heavily involved in several key engineering projects including pipeline cathodic protection design for new transmission stations. Whether these are compressor stations for gas pipelines or pump stations for liquids pipelines, pipeline owners appreciate MATCOR’s innovative application of linear anodes when designing new construction stations.

Pipeline Cathodic Protection Design with Linear Anodes

The advantages of using linear anodes in a new pipeline station environment include:

  • pipeline cathodic protection design for new transmission stationInstallation in the same trench as the buried piping during initial construction greatly reduces installation costs
  • Close coupling of the anode to the piping greatly minimizes the current losses of the CP system to the station’s grounding system
  • Utilizes a low anode gradient / low current output anode system that minimizes interference concerns with other structures and with foreign pipelines outside the station area
  • Provides exceptionally long anode life using MMO (mixed metal oxide) anodes operating at mA/ft current output.

MATCOR has successfully pioneered the use of linear anodes in plant environments for two decades. With the recent surge of pipeline projects, the use of linear anodes in stations has gained significant traction in the market. MATCOR design engineers and field technical personnel are uniquely qualified to perform engineering, pipeline cathodic protection design, field installation support, commissioning and testing services for these critical infrastructure projects.

MATCOR also offers a full suite of cathodic protection and AC mitigation design services for transmission pipeline and oil and gas production pipeline gathering systems.


Have questions or need a quote for engineering and design or materials for your pipeline cathodic protection system? Contact us at the link below.

CONTACT A CORROSION EXPERT

AC Mitigation: 4 Approaches

AC mitigation is the process of designing and applying pipeline grounding systems to:

  • Prevent voltage spikes during fault conditions
  • Reduce AC current density to protect against AC induced corrosion
  • Maintain AC step and touch potentials below 15 Vac to protect personnel from shock hazards
AC mitigation prevents voltage spikes and corrosion and protect workers
AC mitigation prevents voltage spikes, protects pipelines from corrosion and protects workers in areas where the pipeline parallels high voltage transmission lines.

Pipelines that parallel overhead high voltage AC transmission power systems are subject to AC interference. AC interference has several potential adverse impacts on the safety of personnel and pipeline integrity. Assuming that these conditions exist, there are several measures that can be taken to mitigate the AC interference present on a pipeline. These AC mitigation strategies are detailed in various international standards including NACE SP0177-2014 Mitigation of Alternating Current and Lightning Effects on Metallic Structures and Corrosion Control Systems.

There are four basic approaches to mitigating AC Interference. These mitigation strategies are:

1. Fault Shielding

One of the primary concerns with high voltage AC transmission systems parallel to buried pipelines is the risk that a fault condition at a transmission tower could result in the rapid discharge of fault current near the pipeline. This could lead to direct current arcing in soil – rare but very damaging. More common is the rapid ground potential rise that subjects the pipeline coating to large voltage gradients that result in coating damage. Fault shielding is a suitably designed grounding system that is installed between the tower footing and the pipeline that acts to shield the pipeline and shunt harmful currents away from the pipeline by providing a low resistance path to earth. This typically takes the form of a parallel shielding wire, either copper or zinc, connected to the pipeline.

2. Gradient Control Mats

When high levels of AC voltage are present on a pipeline, either during a fault condition or as the result of an inductive coupling during normal steady-state operations, personnel in close proximity to and/or touching any above ground or exposed appurtenance are at risk for electrical shock step or touch hazards. Installing gradient control mat, which is a system of buried bare conductors, typically galvanized steel, copper or zinc, connected to the structure, provides localized touch and step voltage protection by creating an equipotential area around the appurtenance.

3. Lumped Grounding Systems

Lumped pipeline grounding systems consist of shallow or deep localized grounding conductors that are connected to the structure at strategic locations to reduce the AC voltage level along the pipeline. This provides protection to the structure during steady-state or fault conditions from nearby electric transmission.

4. Gradient Control Wire

Gradient control wire grounding systems function the same as the lumped grounding system. With this type of system, long continuous grounding conductor(s) are installed horizontally and parallel to the pipeline. They are strategically located and sized to reduce the AC induced voltage along the pipeline during steady-state or fault conditions from nearby electric transmission.

For mitigating high levels of AC induced voltage along a pipeline, gradient control wires are the most common form of AC mitigation. Hybrid systems that combine lumped grounding systems with gradient control wires are also common. Regardless of the type of pipeline grounding system used, all of these AC mitigation approaches involve installing a grounding device to the affected structure to allow AC induced current and fault current to be quickly discharged off of the pipeline.

AC Modeling

Prior to installing an AC mitigation system, it is common to use a complex AC modeling software to evaluate the impact of fault currents and estimate the steady state induced currents that can be expected along the pipeline. This information is used to determine the quantity and location of mitigation required based on numerous factors, including the resistivity of the soil, the physical characteristics of the pipeline, the operating parameters of the HVAC transmission system and the spatial distances between them.

Engineered AC Mitigation Systems

Based on a thorough assessment of the pipeline and high voltage AC transmission system interaction, including modeling results when available, an AC mitigation system is designed by experienced engineers familiar with the mitigation strategies detailed above. This engineered AC mitigation system would detail the quantity and location of grounding installations required for a specific application. MATCOR’s MITIGATOR is an example of this type of AC mitigation system.

Other features of an engineered AC Mitigation system include:

Special Backfill

It is quite common to install the grounding conductor in a special backfill material. The purpose of the backfill can vary depending on the conductor material chosen and the type of backfill used. The benefits of various types of AC mitigation backfill include:

  • Enhanced surface area – conductive backfills such as carbon or conductive concrete are used to effectively increase the surface area of the grounding conductor reducing the overall resistance to earth.
  • Corrosion/Passivation Protection – some backfills are designed to protect the grounding conductor from corrosion or passivation of the conductor that could adversely affect the life or impede the performance of the grounding conductor.
  • Hydroscopicity – some hygroscopic backfills readily attract and retain water from the environment, helping to maintain a low uniform resistance around the grounding conductor.

Solid State Decouplers

These devices are almost always used in conjunction with AC mitigation systems and are usually installed wherever the grounding system is connected to the pipeline. These devices are designed to allow AC current to flow off the pipeline during steady-state or fault conditions while blocking all DC current. This effectively isolates the pipeline’s cathodic protection (CP) system from the AC mitigation system, preventing the mitigation system’s grounding conductors from taking CP current from the pipeline.

MATCOR provides complete AC Mitigation solutions including design, supply of materials, turnkey installations and comprehensive testing services.


Have questions or need a quote for an AC mitigation system or services? Contact us at the link below.

CONTACT A CORROSION EXPERT

Remediation Options for Aging Pipeline Coating Systems

A linear anode system may be an economical alternative to applying a new pipeline coating system or replacing aging pipelines.

by Ted Huck

Introduction: Addressing Aging Pipelines and Pipeline Coatings

aging pipeline coatingExternal corrosion is one of the significant threats facing pipeline operators worldwide. Historically, pipeline owners have employed a two-tiered approach towards mitigating corrosion risks. The primary defense against corrosion has been to apply a pipeline coating system that acts as a barrier, protecting the steel pipe from its environment. Cathodic protection is employed to supplement the coating system by providing protective current to the holidays or defects within the coating system. As with any aging structure, however, time takes its toll – for older pipelines this often results in an older coating system that starts to degrade in its primary function of protecting the pipeline from its environment.

This paper addresses the fundamental issue that many operators will face when evaluating their aging pipelines and pipeline coating systems. That issue is, quite simply, what is the best strategy to remediate an aging pipeline with deteriorating coating systems to maintain compliance with international standards for pipeline integrity. The options are to improve/upgrade the cathodic protection system, recoat the pipeline, or replace the pipeline. Each of these options will be discussed in detail and a decision matrix will be provided to facilitate the operator’s decision-making process.

Pipeline Coating Systems

Coating systems have been used on buried pipelines during the last hundred years and the technology continues to be the subject of significant research and innovation. Pipeline coating manufacturers are continually searching for better coatings to meet the varied needs of industry. Initially, the coatings were simple mixtures of crude pitches and solvents. These early bitumastic/asphaltic systems evolved into engineered coal tar enamel coating systems, which were prevalent into the 1960’s. The introduction of fusion-bonded epoxies (FBE) in the 1970’s quickly captured much of the pipeline market, although polyethylene, polypropylene and coal tar enamels are still used as well. The coatings industry continues to research and develop improved methods of providing more reliable and more economical coating systems.

When evaluating aging pipelines, coating condition is one of the critical issues that must be addressed. The coating provides the primary defense against corrosion and as the coating system ages and deteriorates, then the risks of corrosion increase exponentially. One of the challenges that must be addressed by pipeline owners is properly identifying the type and vintage of the coatings along a given pipeline. In many cases, different sections of pipeline may have different coating systems depending on the age of the pipeline and the standards in place at the time a section of pipe was installed.

Another critical consideration when evaluating aging pipeline coating systems is to identify whether the coating system fails shielding or non-shielding. Coating systems that fail in a non-shielding mode do not inhibit the flow of current making cathodic protection a viable alternative when considering how to remediate these lines. Other coating systems, principally tape coating systems, can fail in a manner that shields cathodic protection current and thus greatly reducing the possible remediation methods available.

Modern, over-the-line survey technologies have proven to be quite effective in evaluating coating quality and finding coating holidays. Technologies such as pipeline current mapping (PCM) which utilize a carrier signal transmitted along the pipeline with a receiver measuring the line attenuation along the pipeline length can accurately pinpoint areas of significant coating degradation even under concrete or asphalt. The information gathered using PCM in conjunction with pipe to soil close interval surveys (CIS) and direct current voltage gradient (DCVG) testing form the basis for identifying critical risk areas along aging pipelines. In-line inspection technologies using smart pigs also provide valuable data regarding coating quality.

Cathodic Protection

Pipeline coating systems are typically augmented by the application of cathodic protection. With a well-coated pipeline, cathodic protection can be economically applied to protect the coating holidays and defects by placing discreet anode beds that distribute current over long distances. In many cases ground beds can be located several kilometers apart and still provide sufficient current distribution to protect the entire pipeline. With some of today’s high technology factory applied coatings, the coating efficiencies are exceptionally high and the groundbed output requirements are very low. These discreet ground bed systems can either be deep anode ground beds or shallow ground beds located some distance off the pipeline.

Several issues must be considered when designing a cathodic protection system. These include coating quality, soil resistivity, available locations for electrical power, ground bed right of way issues, accessibility for maintenance, AC and DC stray current interference, and a host of additional issues. What is critical for aging pipelines is the regular evaluation of the effectiveness of the CP system. Frequently, as pipelines age and the coating quality begins to deteriorate, the CP systems are unable to provide sufficient current properly distributed to meet established cathodic protection criteria. In many cases, simply ramping up the output of the existing system or adding additional ground beds does not prove sufficient to address the problem.

Aging Pipeline Systems

Problem Identification

Aging pipeline systems with deteriorating coating systems suffer from poor current distribution and are characterized by areas of low potentials and exceedingly high levels of applied current density. The challenge with these pipeline systems is controlling current distribution to achieve the prescribed polarization levels consistent with international standards for adequate cathodic protection.

Figure 1 shows a deep well anode system with current output such that some areas are not meeting required off-potentials of -0.85 Volts to meet NACE criteria.

pipeline coating - insufficient cathodic protection

Initial Responses

The typical response to this problem is to increase the overall output of the deep well system (see Figure 2.) This generally does not alleviate the problems of not meeting the off-potential criteria and leads to over-polarizing the piping (potentials greater than -1.2 Volts.) This can result in coating disbondment further exacerbating the problem. The higher output current increases the ground bed’s consumption rate reducing operating life while raising operating costs appreciably. All this occurs without achieving the required levels of polarization to meet cathodic protection criteria.

pipeline coating - increased cathodic protection output

The next step that is taken to fix the cathodic protection current distribution problem is to add additional ground beds to reduce the distance between point sources. This too, proves to be an ineffective solution as the new ground bed provides only limited additional benefit (see Figure 3.)

pipeline coating - additional cathodic protection ground beds

Remediation Options

The problem cannot be economically resolved by the addition of an ever-increasing number of ground beds applying greater and greater amounts of additional current. The pipeline operator is then faced with a limited number of options: recoat the pipeline, replace the pipeline, or install a linear anode cathodic protection system.

Recoating/replacing is the only viable alternative for pipeline systems utilizing shielding type coatings such as tape wrap systems. Recoating costs typically run several hundred dollars per foot in open right of way areas and can be significantly more expensive in congested urban locations (these are ballpark numbers applicable to the United States and can vary significantly.) Recoating, when properly performed, can restore the pipeline coating system to an as new condition greatly extending the service life of the recoated section. The critical issue is to assure that the recoating is executed by an experienced coatings contractor with rigorous quality controls in place. Pipeline replacement is expensive and only performed when extensive third-party damage, significant corrosion or other extenuating circumstances warrant.

An economically attractive alternative to recoat/replace options is to utilize a linear anode configuration in lieu of point anode systems. This option is only viable when the coating system is non-shielding – this would include asphaltic and epoxy type coating systems. The application of a linear anode system typically costs between $20-30/foot in open right of way (again these are general price guidelines and can vary significantly.) In suburban or urban areas, horizontal directional drilling (HDD) can be an effective installation method with minimal surface disruptions. These linear anode systems eliminate the distribution problems experienced by point anode systems; they are in effect an infinite series of point anodes, which provide an optimum current distribution (see Figure 4.)

pipeline coating - linear anode system for optimum current distribution

In addition to confirming that the pipeline coating system is non-shielding and appropriate for the application of linear anodes, the linear anode system design must take into consideration the critical issue of voltage drop and its affect on current attenuation. Voltage drop can have a significant impact on DC power distribution to the linear anode system. Ideally, rectifiers would be located no further than half a mile to a mile apart, however, practical considerations including availability of AC power, right of way issues and other factors can force this to be extended further complicating the system design and affecting the installed cost.

While the design can be complicated by voltage drop considerations, one of the benefits of a linear anode system is that the power consumption is relatively low. Ground bed resistance, as determined by Dwight’s Equation, is significantly affected by anode length and this results in very low groundbed resistance values for linear anode systems relative to conventional ground beds. This makes the linear anode system much more suitable for low wattage power sources such as solar arrays and thermo-electric generators (TEG’s) than conventional ground beds whose wattage could be two or more times that of a linear anode system to achieve the same current discharge.

Conclusion

Aging pipeline systems with deteriorating coating systems present a difficult challenge to pipeline operators. The more the coating deteriorates, the more difficult it is to distribute current further away from the ground bed. The natural response to ramp up the ground bed output does an inadequate job of throwing current further but does result in increased current flow, higher current densities and over polarization near the ground bed further stressing the coating system. Adding additional ground beds also allows more current to be applied to the pipeline, but does not alleviate the current distribution issues. Ultimately, pipeline operators are faced with the choice of recoating/replacing the pipeline, or installing a linear anode system. The flowchart below (Figure 5) provides a decision matrix. Note that aging pipeline systems whose coating systems are determined to be in good condition through indirect and direct examination, require additional investigation to determine why criteria is not being achieved.

Aging pipeline coating decision matrix


For assistance with evaluating aging pipelines or installing linear anode cathodic protection systems, please CONTACT US.

Pipeline Rehabilitation and “Attenuation Deficit Disorder”

Around the world, the pipeline industry is seeing a growing number of “attenuation deficit disorder” outbreaks along their older pipelines. This is not a disease or a medical condition afflicting pipeline company personnel, but is a reference to a growing global problem with pipeline cathodic protection (CP) systems that are affected by older coatings that are failing. Pipeline operators need a solution for pipeline rehabilitation.

Pipeline Rehabilitation Solutions

Pipeline Rehabilitation ArticlePipeline operators worldwide are grappling with what to do as their 1950’s, once state of the art coatings systems start to fail. In our recent article in World Pipelines, Ted Huck examines two possible solutions for pipeline rehabilitation:

  • Recoating the Pipeline: At some point in the process of adding more CP stations and increasing the current output to levels that further degrades the coating, it becomes apparent to the pipeline operator that more drastic measures are required.
  • Rehabilitating the Cathodic Protection System: Under the right circumstances, an attractive alternative to the recoat approach is to consider the use of linear anodes as a rehabilitation strategy.

For additional information about these pipeline rehabilitation solutions, please read the full article in the September issue of World Pipelines. You can access the article HERE.

For assistance with cathodic protection design, MATCOR’s linear anodes for pipeline cathodic protection, project management or installation, please contact us at the link below.

Contact a Corrosion Expert

Not Just a Walk Along the ROW: Close Interval Potential Surveys

Close Interval Potential Surveys (CIPS) or close interval surveys (CIS) for those in the United States, are an invaluable assessment tool used to maintain pipeline integrity. Close Interval Surveys are frequently mandated by pipeline regulatory authorities.

Keys to a Successful CIPS Survey

  • Selecting a qualified survey crew
  • Advanced planning
  • Selecting the appropriate CIPS Type
  • Accurate CIPS Data Collection
  • Expert Data Analysis and Reporting

Close Interval Surveys (CIS, CIPS)Learn more about the keys to a successful CIPS survey and other considerations in our recent article appearing in World Pipelines, “Not Just a Walk Along the ROW” by Ted Huck.

READ THE ARTICLE

Are you ready for spring close interval surveys?

MATCOR is here to help. Our experienced and NACE-trained crews are ready to perform close interval surveys to keep your pipeline cathodic protection systems in compliance and operating effectively.

  • Excellent safety record
  • Accurate, reliable data collection
  • Daily field progress reports
  • Extensive engineering and IT support

Contact MATCOR about your CIPS requirements or learn more about our close interval survey capabilities

 

Pipeline Petroleum Transport Investment May Predict Growing Cathodic Protection Needs

If Warren Buffet’s investment strategy is any indication, pipeline efficiency is going to start playing a bigger role in moving crude oil and natural gas in the United States.

The Berkshire Hathaway luminary is pipeline-efficiency-cathodic-protectionspearheading a swap of about $1.4 billion in shares of Phillips 66 for full ownership of the energy company’s pipeline petroleum transport services business. The business unit’s focus is polymer-based additives that are used to move crude oil and natural gas through pipelines more efficiently by reducing drag.

The shift in Berkshire’s investment strategy comes amid a boom in U.S. crude oil and natural gas production. Since many liquids pipelines in the United States are operating at capacity, producers can use the pipeline petroleum transport additive to quickly increase capacity without immediately growing pipeline infrastructure.

Although future pipeline projects may be in the works to meet the sharp increase in demand, the process of gaining approval for new pipeline projects can be slowed by permitting.

A greater reliance on existing pipelines for transporting liquids means that producers and pipeline owners need to pay even more attention to cathodic protection management, according to Kevin Groll, project management director for MATCOR, a Pennsylvania-based company that specializes in cathodic protection products and services.

“Any time you have pipeline you have to protect it from corrosion,” Groll said. “And that’s especially true when you increase the value of a pipeline by increasing its capacity. If that pipeline were to develop a corrosion problem you’d be facing a situation where your profitability could suffer significantly.”

“With pipeline owners using additives to push greater volumes of liquids it becomes imperative to use cathodic protection products such as impressed current anodes and cathodic protection rectifiers to protect the increased capacity and profitability of the pipeline infrastructure.”

Further Reading

Berkshire Swaps $1.4 Billion in Phillips 66 Stock in Deal,” Bloomberg, December 31, 2013.

Following our success in 2013, MATCOR is expanding by hiring new talent for cathodic protection, corrosion engineering jobs.

MATCOR is a full service provider of customized cathodic protection systems to the oil & MATCOR_Vertical_webgas, power, water/wastewater and other infrastructures industries.  Cathodic Protection is a technique used to control the corrosion of a metal surface by making it the cathode of an electrochemical cell.  MATCOR has an array of proprietary cathodic protection products and systems combined with high-quality corrosion engineering services, and installation and maintenance services.

In business for over 40 years, MATCOR is considered the technology leader in cathodic protection and corrosion engineering.  MATCOR is headquartered in Chalfont, PA, has a major service operation in Houston, TX, provides turnkey services throughout the United States, and has a growing list of international distributors.  MATCOR has been named to the Inc. 5,000 list of fastest growing companies in 2011, 2012 and 2013. Because of strong continued growth, MATCOR is seeking talented new team members to fill cathodic protection and corrosion engineering jobs.

MATCOR employees and culture are driven by three core principles. Whether a technician, engineer or manager, these principles guide us toward positive relationships with our clients and positive outcomes to every project we undertake.  These core values are:  We Respect Others, We Honor our Commitments and We Act in a Safe and Responsible Way.

“Our cathodic protection and corrosion engineering job openings, from technician to management positions, offer you the opportunity to grow with our team of seasoned cathodic protection experts and become part of a unique culture,” said Doug Fastuca, president of MATCOR, “As we are experiencing tremendous growth and request for our products and service offerings, this is an excellent time to join MATCOR.  In addition to competitive benefits, you can become NACE certified and enjoy other advanced educational opportunities.”

Our ideal job candidates will possess these values and hold a positive attitude.  This is a rapidly growing company with many new career opportunities.  Your cathodic protection, corrosion engineering and management job opportunity is here, today!

View the open position here: http://matcor.applicantpro.com/jobs/

Companies Performing Horizontal Directional Drilling Increase Efficiency, Open Door for More Cathodic Protection

As a result of increased drilling speeds, companies operating horizontal directional drilling sites in the Marcellus Shale region are drilling bigger wells more efficiently and affordably, and are producing more natural gas than ever before.

“Since I came up here three years ago, it’s 200 percent better,” said David Dewberry, who manages a Lycoming County drilling site in Pennsylvania’s Loyalsock State Forest for Seneca Resources Corporation, the exploration and production segment of Houston-based National Fuel Gas Company.

When Dewberry started working in Pennsylvania’s Marcellus Shale in 2010, the oil and gas industry veteran said it took him more than a month to drill a natural gas well. However, improvements to horizontal directional drilling equipment and processes have cut drilling times significantly.

According to Dewberry, a new 2 1/2-mile well project that began on Dec. 4 will be completed in just 16 days. When that’s done, his rig will crawl 20 feet and begin drilling another well, in an assembly-line fashion known as pad drilling, until nine wells are completed on the site.

“We’ve become so much more efficient,” Dewberry said.

Greater drilling efficiency in the Marcellus Shale region has not only yielded longer horizontal wells in shorter times, it’s meant fewer rigs are required to meet, and even exceed, the previous pace of drilling and natural gas extraction. In fact, the U.S. Energy Information Administration has officially recognized that drill-rig counts are an obsolete MATCOR's Iron Gophermeasure of output. The administration now relies on drilling speed and production as a way to quantify efficiency.

Of course, an increase in drilling efficiency means more wells are being constructed. And that means companies performing horizontal directional drilling need to invest more in cathodic protection for wells and pipelines, according to Nick Judd, director of field operations for MATCOR, a Pennsylvania-based company that specializes in cathodic protection products and services.

“The need for managing and preventing corrosion is growing alongside the rush of new wells being drilled in the Marcellus Shale,” Judd said. “The process of hydraulic fracturing used to access the Marcellus Shale requires miles and miles of steel pipeline and every inch of it is subject to corrosion, which can affect the safety, performance, and efficiency of the natural gas well. In addition to wells and pipelines, the transfer piping associated with the gathering fields also requires corrosion prevention. An effective cathodic protection system extends beyond the well casing to include all piping from the casing of the well, to the piping in the pump station, the transfer piping and further downstream.”

“Impressed current anodes and linear anodes for cathodic protection, like our Iron Gopher™, are invaluable tools for horizontal directional drilling companies,” Judd said. “Controlling costs and mitigating issues associated with well and pipeline corrosion are critical factors for insuring the profitability goals of any drilling project.”

Further Reading

Marcellus Shale Drilling Becomes More Efficient,” The Philadelphia Inquirer, December 16, 2013.