Category Archives: Regulation

PHMSA Mega Rule – August 2022 Update

PHMSA Mega Rule Update

Just last week – PHMSA issued its final rule expanding Federal pipeline safety oversight to all onshore gas gathering pipelines. Known as the PHMSA Mega Rule, this ruling has tremendous impact on the US pipeline industry, adding significant scope to the current pipeline integrity management requirements.

The final rule affects tens of thousands of miles of previously unregulated gas gathering pipelines. Also, pipeline operators have to report safety information for more than 450,000 miles of gas gathering lines governed by Federal reporting requirements.

Some of the impacts of the PHMSA MEGA rule on the industry include:

  • An approximately 20% increase in the number of regulated pipelines in the United States
    The addition of 20% more regulated pipelines had a significant impact on an industry where highly qualified integrity professionals and related services were limited in supply and the industry was already struggling to meet demand.  These additional pipelines required significant integrity resources.
  • Expedited reporting requirements
    The time restrictions for implementing the new rule were accelerated, with initial reporting requirements having started in July 2020. The time to comply with these regulations was reduced by 20% from the initial draft order timeline.
  • Increased cathodic protection requirements
    Many pipelines that previously were not regulated and have not had proper CP required a properly designed, maintained, and tested cathodic protection system.

What Does The Final Rule State?

The final rule expands PHMSA’s Part 192 to gas gathering lines that fall within Class C, a new pipe category. Within Class C, the requirements for operators vary based on a risk scale. The risk scale varies with pipeline diameter and proximity to people (BIHO – buildings intended for human occupancy).

For pipelines that meet these criteria, the requirements for corrosion control (CFR 49 Part 192 Subpart I – Requirements for Corrosion Control) will now apply to these previously unregulated lines. The Part 191 incident and annual reporting requirements have expanded to include all previously uncontrolled gas gathering lines, regardless of Class.

How Can MATCOR Help Company Operators Comply with PHMSA Mega Rule?

Gas producers and midstream gas pipeline operators have to reevaluate their pipeline networks to incorporate any previously uncontrolled pipelines to comply with CFR 191 and CF 192. MATCOR offers a wide range of cathodic protection and integrity services to help our customers including:

It is going to continue to be exciting times in the midstream market.

Read or download the full PHMSA final rule.


If you are looking for help complying with the PHMSA’s new Mega Rule and its additional requirements, please contact us. We will respond by phone or email within 24 hours. For immediate assistance, please call +1-215-348-2974.

Contact a Corrosion Expert

MATCOR Adds a New Drill Rig to Our Fleet

Drill rig for cathodic protection installation

MATCOR is excited to announce the acquisition of a new drill rig to our existing fleet of HDD and vertical drill rigs.

Our newest rig is designed to be a cost-effective option for drilling shallow holes. The rig features a much smaller footprint than the conventional deep anode drill rigs used for installing Durammo® and other deep anode systems.

Drill Rig Features

The smaller and more agile auger rig allows MATCOR to be able to maneuver the rig in tighter areas than the full-scale vertical rig would allow. Additionally, the unit is available with a hollow stem drill pipe allowing us to lower anodes in place in environments where an open hole may not be feasible. The rig is capable of drilling holes down to 100 feet deep, but for hollow stem purposes, we are limited to a depth of only 50 feet.

What This Means for Our Future

MATCOR is excited to add this new rig to our industry-leading inventory of cathodic protection installation enabling us to better compete for:

  • Shallow conventional anode beds
  • Distributive anode beds around tanks and congested facilities
  • Mobility is increased since it is loaded on to a semi-trailer

For more information, please contact us at the link below, or reach out to your local MATCOR account manager.

Contact a Corrosion Expert

Filling the Oil and Gas Industry Labor Gap

Skilled MATCOR technicians are available for short-, medium- or long-term engagements.

Labor shortages are right up there with supply chain challenges for businesses everywhere. Unfortunately, the oil and gas industry is front and center in the conversation about chronic labor challenges.

Several factors are at play.

Oil and Gas: A Less Popular Career Choice

Boom-and-bust cycles are endemic to the oil and gas business. This, along with the persistent demonizing of the industry in the media, has resulted in the oil and gas industry becoming much less desirable to potential talent entering the workforce.

In fact, only 2 percent of US College graduates consider the oil and gas industry their top choice for employment. It is no surprise that the industry struggles to compete for talent with other more appealing high tech, pharmaceutical and green energy sector industries for scarce technical talent.

Demographics

Skilled laborers are retiring from the oil and gas industry at a faster rate than ever before. This “Baby Boomer Brain Drain”, where experienced, skilled labor leaves the workplace faster than younger, less experienced workers are entering the workplace, continues to have a profound impact on midstream companies.

Regulatory Issues

Finally, the advent of the PHMSA Mega Rule places additional regulatory scrutiny on the oil and gas industry. As a result, companies will see their scarce technical labor resources stretched even further.

MATCOR’s Answer to the Oil and Gas Industry Labor Shortage: Corrosion Technicians for Hire

MATCOR is here to help. As a service provider we are constantly bringing in and developing technical talent. Our pipeline of technicians are available to fill the gaps.

Short-, medium- or long-term engagements enable our technicians to provide the additional labor needed to keep your business moving.

Additionally, MATCOR’s engineering team can design and install remote monitoring systems. This automates the data collection required for regulatory compliance and reduces the strain on local corrosion technicians.


For information on hiring MATCOR skilled technicians or our engineering services, please contact us at the link below, or reach out to your local MATCOR account manager.

Contact a Corrosion Expert

PHMSA Rule Making Updates – a look at what is ahead on the US Regulatory Front

See our October 2019 Update on the PHMSA Mega Rule.

Overall
The US Pipeline regulatory environment is poised to see several new rules implemented to expand the scope and effectiveness of pipeline regulations with a goal to improve the integrity and safety of hazardous material pipeline. These rule changes were all initiated years ago and have been winding their way through the regulatory process, soliciting input from the industry and from concerned citizens, environmental groups and other interested parties.

The Liquids “Final Rule”
In January of 2017 in the last few days of the Obama Administration, the Department of Transportation’s Pipeline and Hazardous Materials Safety Administration issued a final rule amending its Rule 49 CFR 195 that among other things expanded integrity management and leak detections beyond high consequence areas (HCA’s). The Final Rule tightened standards and broadened data collection and monitoring requirements for pipeline operators. A few days into the Trump administration, the White House issued a directive to federal agencies to freeze sending new regulations to the Office of the Federal Register (OFR) and withdrawing any regulations sent to the OFR. Thus the liquids “Final Rule” that was 6 years in the making was withdrawn and is awaiting resubmittal by the new administration.
While the exact requirements of the Final Rule may be changed, some of the key changes from the withdrawn rule included:

• Assessment of non-HCA pipeline segments every 10 years in compliance with provisions of 49 CFR Part 195.
• Increased use of inline inspection tools for all hazardous pipelines in HCA.
• Requirement for leak detection systems for covered pipelines in both HCA and non-HCAs.

PHMSA anticipates coming out with their revised “Final Rule” in the Fall of 2018.

The Gas “Mega Rule”

On the gas side of the pipeline regulatory environment, 49 CFR Parts 191 and 192, several public meetings have been held regarding PHMSA’s proposed gas rules, often referred to as the Gas Mega Rule. The rulemaking changes originally recommended would have nearly doubled the current number of pages in the regulations. PHMSA has announced that instead of one Mega Rule, the effort would be broken into three separate rules that are expected to be introduced in 2018 and to go into effect in 2019. Part 1 addresses the expansion of risk assessment and MAOP requirements to include areas in non-High Consequence Areas (HCAs) and moderate consequence areas (MCAs.) Part 2 of the rule making focuses on the expansions of integrity management program regulations including corrosion control to gathering lines and other previously non-regulated lines. Part 3 of the gas rule making is expected to focus on reporting requirements, safety regulations and definitions to include expanding into related gas facilities associated with pipeline systems.

Oil sands critics target a new concern – pipelines

The crude oil that is pulled from Canada’s oil sands is thick and heavy, a black tar-like substance that takes large amounts of energy and effort to make into end products like gasoline and diesel. Even some people in the Alberta energy industry describe it as “nasty” stuff.

But is it also dangerous?

Over the past few months, critics of the oil sands have taken a new tack. They are now arguing that oil sands crude, which contains more contaminants than traditional sources of crude, poses a risk to pipeline safety – and they’ve linked the recent spate of North American oil pipeline spills to what they say is the corrosive content of oil sands products.

It’s an argument that began with environmental groups, but has now been taken up by legislators. Last week, for example, Alcee Hastings, a U.S. Democratic congressman, warned that “the risk of an oil spill from these tar sands pipelines is very real.”

“The oil eats away the pipelines, compromising them and leading to frequent spills,” he said during a debate on the proposed TransCanada Corp. Keystone XL pipeline, which will bring oil sands crude to the U.S. Gulf Coast if it is approved. That echoes a February report from the Natural Resources Defense Council, an influential U.S. environmental group, which called oil sands crude a “highly corrosive, acidic, and potentially unstable” substance that “may be putting America’s public safety at risk.”

That conclusion has always been contradicted by industry, which has maintained that oil sands crude is safe. TransCanada, for example, has argued that it simply would not place at risk its $13-billion Keystone line by filling it with a dangerous substance. Yet the debate highlights the political obstacles that exist for the project, a crucial piece of infrastructure for getting the ever-rising volume of Alberta oil to market.

The two sides have left little middle ground between them. So who is right?

Interviews with academics, engineers and federal officials make clear that oil sands crude does indeed appear to pose additional risks. But those risks are largely borne by refineries that have had to deal with a dirtier and more corrosive substance than industry has been accustomed to.

In pipelines, independent sources suggest that the danger is substantially lower. Indeed, in decades past, thick bitumen was actually used to coat pipelines as protection against corrosion. And pipelines are partly shielded by the fact that they operate nearer room temperatures. Refineries, in contrast, process crude at up to 400 degrees Celsius, and the fierce heat promotes a series of chemical interactions that don’t happen at lower temperatures.

The corrosion question largely surrounds the properties of diluted bitumen, also called “dilbit.”

Oil sands producers generally produce two different products. One, “synthetic crude,” has passed through a sort of pre-refinery, called an upgrader, to transform it into a lighter substance that contains far fewer impurities. Dilbit comes from producers that don’t run upgraders. Instead, they take the oil sands crude and, with minimal processing, thin it with a lighter oil and pump it into a pipeline. As a result, it contains far higher levels of numerous noxious substances, including sulphur, acids, salts and sediments.

That in itself has raised some concerns.

Take sulphur, for example. Oil sands crude contains sulphur levels up to 10 times higher than other oil. But in dilbit, the sulphur is locked up with heavy oil molecules. As a result, it is largely harmless inside a pipeline, said Harvey Yarranton, a professor of chemical and petroleum engineering at the University of Calgary.

“You’d have to put it into reaction temperatures to release that sulphur – and those are above 300 Celsius,” he said.

Acids and salts are also found in substantially elevated levels in dilbit. But both substances are “not corrosive under pipeline conditions,” according to Natural Resources Canada, whose researchers have studied the corrosiveness of different oils. Acids need temperatures above 200 Celsius for corrosion to occur, the government said in a statement.

One area of concern remains sediments – little bits of sand that are embedded in oil. Industry measures these in pounds per 1,000 barrels. Conventional oil might measure 30 to 50 pounds per 1,000 barrels. Scott Bieber, a marketing manager with oil field services giant Baker Hughes Inc., has seen oil sands bitumen hit 500.

Sediments can contribute to corrosion in pipelines – and they have become a significant menace in refineries, where they have proven difficult to remove and help foul wastewater, Mr. Bieber said.

And environmental critics say that with the expansion in the oil sands, more study needs to be done of the effects dilbit has on pipelines. In particular, the thickness of oil sands crude – it’s far more viscous than conventional oil – creates friction inside pipelines that creates higher temperatures.

With Keystone XL, TransCanada has predicted temperatures as high as 55 Celsius. That remains far from the heat in a refinery, but higher temperatures do speed corrosion, and Anthony Swift, an energy analyst with the National Resources Defense Council, said governments both in Canada and the U.S. should take notice.

“There’s enough information out there about [the risks of] this stuff that merits a study,” he said. “The government should be protecting the public, and it’s a huge concern when they turn a blind eye to a potential danger.”

SOURCE: http://www.theglobeandmail.com/report-on-business/industry-news/energy-and-resources/oil-sands-critics-target-a-new-concern-pipelines/article2116408/

Get News from MATCOR

Sign Up for Our Newsletter

    I understand my information will be stored securely for the sole purpose of conducting business with MATCOR, Inc. I agree to receive future email communication and understand that I may opt out at any time. View our Privacy Policy.
  • This field is for validation purposes and should be left unchanged.