Chief Big Dig engineer is fired over light fixture controversy

Helmut Ernst, the embattled chief engineer of the Big Dig, has been fired, the state transportation secretary said today, as the fallout continued from the controversy over a light fixture collapse earlier this year in one of the project’s tunnels.

Ernst had already been reprimanded and suspended for his role in the state’s failure to notify the public for more than a month after a corroded 110-pound light fixture collapsed onto the highway in the O’Neill Tunnel on Feb. 8.

Transportation Secretary Jeffrey Mullan said the department had finished a review of Ernst’s performance on Friday and concluded he could no longer serve as the District 6 highway director, the former title for his job as a top engineer in charge of the Big Dig tunnels.

Mullan said he offered Ernst other jobs in the transportation department, but Ernst, who has worked as an engineer for the state highway system for two decades, declined to take them.

“As a result of that, we terminated Helmut’s employment at the DOT today,” Mullan told reporters at the state’s highway operations center in South Boston. “It was clear that we lost confidence — I lost confidence — in him, and given some of the issues, someone in a leadership position like that, I would expect more,” Mullan said.

Tom Broderick, currently the chief engineer in the highway division, will replace Ernst while the department searches for a permanent replacement.

The collapse revealed widespread corrosion in lights throughout the 7.5-mile Big Dig tunnel system — and the delay by state officials in notifying the public sparked outrage and concern about the tunnels’ safety.

In an interview in July with the Globe, Ernst said his team of engineers filed no written report about the collapsed light fixtures despite state policy requiring documentation of safety issues. Ernst admitted his engineers had been wary about writing things down since the 2006 collapse of a Big Dig ceiling panel that killed a woman.

“After all the depositions in the ceiling collapse case, we just meet and talk about it … What’s the point of putting it in writing?” he said. He said engineers had been “trained not to.”

Ernst claimed he had called his boss, Frank Tramontozzi — who was forced to resign in March as highway administrator for his own role in mishandling the light fixture collapse — the day after the collapse. Tramontozzi said he didn’t learn about the collapse until Feb. 28.

Ernst also claimed he brought up the collapse at a Feb. 14 senior staff meeting. But seven other staffers, questioned by a staff lawyer at Mullan’s request, said they didn’t remember him mentioning it.

Mullan said he was not pushing out a whistleblower, who had spoken out about problems in the Big Dig. “I don’t think that’s related to it all,” he said.

He said there would not be a chilling effect on other employees, discouraging them from speaking out. “No,” he said. “It just didn’t work out, and sometimes it doesn’t work out.”

Mullan has said he plans to leave his own job by the end of the year, but said today he has not settled on the exact date when he plans to step down.

SOURCE: http://www.boston.com/Boston/metrodesk/2011/08/chief-big-dig-engineer-forced-out/XXfFA4dQ3daU1pNdCO4KHJ/index.html

Oil sands critics target a new concern – pipelines

The crude oil that is pulled from Canada’s oil sands is thick and heavy, a black tar-like substance that takes large amounts of energy and effort to make into end products like gasoline and diesel. Even some people in the Alberta energy industry describe it as “nasty” stuff.

But is it also dangerous?

Over the past few months, critics of the oil sands have taken a new tack. They are now arguing that oil sands crude, which contains more contaminants than traditional sources of crude, poses a risk to pipeline safety – and they’ve linked the recent spate of North American oil pipeline spills to what they say is the corrosive content of oil sands products.

It’s an argument that began with environmental groups, but has now been taken up by legislators. Last week, for example, Alcee Hastings, a U.S. Democratic congressman, warned that “the risk of an oil spill from these tar sands pipelines is very real.”

“The oil eats away the pipelines, compromising them and leading to frequent spills,” he said during a debate on the proposed TransCanada Corp. Keystone XL pipeline, which will bring oil sands crude to the U.S. Gulf Coast if it is approved. That echoes a February report from the Natural Resources Defense Council, an influential U.S. environmental group, which called oil sands crude a “highly corrosive, acidic, and potentially unstable” substance that “may be putting America’s public safety at risk.”

That conclusion has always been contradicted by industry, which has maintained that oil sands crude is safe. TransCanada, for example, has argued that it simply would not place at risk its $13-billion Keystone line by filling it with a dangerous substance. Yet the debate highlights the political obstacles that exist for the project, a crucial piece of infrastructure for getting the ever-rising volume of Alberta oil to market.

The two sides have left little middle ground between them. So who is right?

Interviews with academics, engineers and federal officials make clear that oil sands crude does indeed appear to pose additional risks. But those risks are largely borne by refineries that have had to deal with a dirtier and more corrosive substance than industry has been accustomed to.

In pipelines, independent sources suggest that the danger is substantially lower. Indeed, in decades past, thick bitumen was actually used to coat pipelines as protection against corrosion. And pipelines are partly shielded by the fact that they operate nearer room temperatures. Refineries, in contrast, process crude at up to 400 degrees Celsius, and the fierce heat promotes a series of chemical interactions that don’t happen at lower temperatures.

The corrosion question largely surrounds the properties of diluted bitumen, also called “dilbit.”

Oil sands producers generally produce two different products. One, “synthetic crude,” has passed through a sort of pre-refinery, called an upgrader, to transform it into a lighter substance that contains far fewer impurities. Dilbit comes from producers that don’t run upgraders. Instead, they take the oil sands crude and, with minimal processing, thin it with a lighter oil and pump it into a pipeline. As a result, it contains far higher levels of numerous noxious substances, including sulphur, acids, salts and sediments.

That in itself has raised some concerns.

Take sulphur, for example. Oil sands crude contains sulphur levels up to 10 times higher than other oil. But in dilbit, the sulphur is locked up with heavy oil molecules. As a result, it is largely harmless inside a pipeline, said Harvey Yarranton, a professor of chemical and petroleum engineering at the University of Calgary.

“You’d have to put it into reaction temperatures to release that sulphur – and those are above 300 Celsius,” he said.

Acids and salts are also found in substantially elevated levels in dilbit. But both substances are “not corrosive under pipeline conditions,” according to Natural Resources Canada, whose researchers have studied the corrosiveness of different oils. Acids need temperatures above 200 Celsius for corrosion to occur, the government said in a statement.

One area of concern remains sediments – little bits of sand that are embedded in oil. Industry measures these in pounds per 1,000 barrels. Conventional oil might measure 30 to 50 pounds per 1,000 barrels. Scott Bieber, a marketing manager with oil field services giant Baker Hughes Inc., has seen oil sands bitumen hit 500.

Sediments can contribute to corrosion in pipelines – and they have become a significant menace in refineries, where they have proven difficult to remove and help foul wastewater, Mr. Bieber said.

And environmental critics say that with the expansion in the oil sands, more study needs to be done of the effects dilbit has on pipelines. In particular, the thickness of oil sands crude – it’s far more viscous than conventional oil – creates friction inside pipelines that creates higher temperatures.

With Keystone XL, TransCanada has predicted temperatures as high as 55 Celsius. That remains far from the heat in a refinery, but higher temperatures do speed corrosion, and Anthony Swift, an energy analyst with the National Resources Defense Council, said governments both in Canada and the U.S. should take notice.

“There’s enough information out there about [the risks of] this stuff that merits a study,” he said. “The government should be protecting the public, and it’s a huge concern when they turn a blind eye to a potential danger.”

SOURCE: http://www.theglobeandmail.com/report-on-business/industry-news/energy-and-resources/oil-sands-critics-target-a-new-concern-pipelines/article2116408/

Pipeline with Coating Degradation benefit from Deep Well Anode Solution

MATCOR Mini-Deep Anode
The MATCOR Mini-Deep Anode will protect the system for 20 years or more

An International Petrochemical Company contracted with MATCOR to review assessment data gathered more than 10 years earlier.  MATCOR’s initial findings showed the existing Cathodic Protection System was struggling to maintain criteria.  To determine the exact cause of the problems MATCOR launched a comprehensive survey of 20 miles of 26 inch pipeline.

From the initial review of the pipeline, it became clear that the existing Cathodic Protection system did not have the capacity to distribute DC current effectively. MATCOR’s technicians performed Close Interval Surveys (CIS), Pipeline Current Mapping (PCM), and Direct Current Voltage Gradient (DCVG) surveys.  In addition, MATCOR took soil samples and had them analyzed, measuring pH, sulfates and sulfides, chlorides and moisture content.  The results corresponded with the smart pig runs, which further validated the testing and data analysis.  The survey revealed significant coating degradation.

It was clear from the current requirement test results that a new Cathodic Protection System was necessary.  The client’s choice was MATCOR’s patented Mini-Deep Anode System, which is very easily installed without disruption to the pipeline.

In all, 15 Mini-Deep Anodes were used to protect 40-plus miles of pipeline and connecting laterals.

MATCOR strategically placed ground beds approximately one mile east and west of the rectifiers.  On a new pipeline, each MATCOR Mini-Deep Anode can protect many miles of line, but since these pipelines experienced coating degradation, MATCOR designed the system to protect the existing lines from low structure to electrolyte potentials.

Upon completion of the testing and commissioning of the rectifier and ground bed system, this pipeline system, with associated laterals, was able to achieve -850mV OFF potential throughout its entire length.

The client was concerned that the 100mV criterion would have to be used in certain areas due to poor coating conditions; however, this was not the case.  MATCOR achieved complete integrity by incorporating the correct combination of engineering, design, and cooperation from the client.

The Mini-Deep Anodes will protect the system for 20 years or more.